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ON A SIMPLE RELATION OF EXACT ATRFOIL THEORY
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Exact theory for incompressible potential flow yields the following

relation for the distribution of surface velocities about a two-dimensional

airfoii:t?

U = k[sin(pwx) + sin(o+B)] / (1)
where U 1s the velocity made dimensionless with respect to free stream,

k is a function of airfoil geometry only, ¢ the angular coordinate on a

x_.:-*
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B the negative of the a.ngleﬁof *zero J..ift M\,By simple trigonometry, an

. 4{,

-.circle conformally related to the airfoil, a the angle of attack, and ‘

interesting relation can be derive& Wbi?h has apparently been overlooked,
and which bears on concepts a.ris_ng from thin-airfoll theory. If the
rotation a* =a + B, ¢ = ¢ - B 1is introduced, then by expanding and

coliecting terms,

U = k[sin ¢*cos a* + (1 + cos q*)sin a*] (2),

so that at zero 1lift (a* = 0);°
U, = k sin o¥ . (3)
and at a* = /2,
Uy = k(1 + cos o¥) (%)

(The velocity distribution U; corresponds to the maximum dimensiorless
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circulation to which the Kutta condition can give rise.) Evidently, then,
U = Uycos a* + U;sin a¥* (52)
and since 1ift coefficient is exactly proportional to sin a¥,
U = Uycos a¥ + Ulcz/cZl (5b)
vhere the final subscript 1 again refers to o* = x/2.

It is clear that, for small o*, the two terms of either Eq. (5a)
or (5b) are somewhat analogous to the thin-sirfoil concepts of "basic"
and "additional" velocity distributions, respectively. In fact, for
symmetrical airfoils, the factor U_-,_/cll is the same as the familiar
"additional wvelocity increment” Ava/V of Ref. 3. The correctness of
Eq. (5b) for such airfoils has already been demonstrated by Loftin,4 using
the notation of Ref. 3, although Avg/V wes not interpreted as Ul/cll'
For cambered airfoils, of course, these two quantities are not the same,
since ANa/V is computed for umcambered thickness forms only, in accord
with thin-airfoil concepts, and can no longer be used in an exact manrer
for cambefed airfoils. Egs. (5), however, are valid for all airfoils.

In thin-airfoil theory, the basic velocity distribution (thatAto
wbich the "additional” is added) is chosen in an essentially arbitrary
menner, usually at the "ideal" angle of attack® rather than at zero
1ift.® A somewhat similar arbitrariness can be demonstrated in exact
theory by generalizing Eq. (5a). While the generalized equation is
easily derived from Eq. (1), it may be instructive to use a different

approach.
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Let the "chord" of an arbitrary airfoil be a completely arbitrary
reference line; that is, the flow at a = 0 is any arbitrarily chosen
fiow which satisfies the Kutta condition, with surface-velocity distri=
bution U,. At o = /2, the "chord" is normal to free stream, and the
velocity distribution may be designated U,. At arblirary a, then,
the free-stream velocity vector may be resolved into components paral-
leled and normal to the "chord," and the distributions due to each
component may be added, The result is
U = Ugecos a + Upsin « (6)
For small «, the concepts of "basic" and "additional" velocity distri-
butions again have an approximate validity for the two terms of this
equation. Only if the "basic" ¢; is small, however, will the second
term be approximately proportional to "additional® ¢;. Furthermore,
the concept that the effect of airfoil shape (either thickness, camber,
or both) is primerily embodied in the "basic" velocity distribution
finds no interpretation in the equations above. 4
Certain further concepts are suggested by the equations in their
own right, and these may be of interest. The ratio cy/c;, 1in Eq. (5b)
is the ratio of any given 1lift coefficient to the maximum to which the
Kutta condition can give rise. The term "circulation ratio™ and symbol
k seem appropriate for this quantity. In terms of «x, Eq. (Sb) becomes
U = Uy N1 - k2 4 Upk (5:)
The concept of circulation ratio might be useful in applications of

boundary-layer control and forced circulation, in which ratios
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approaching unity, and effective ratios exceeding unity, respectively,
might be encountered. The use of &k would lend emphasis to the theo-
retical nonlinearity and low slopes of 1ift curves for such flows,
since k = sin a* (when the Kutta condition is satisfied).

The use of the coordinate ¢* in Egs. (2) to (4) serves to
emphasize the unique conformal correspondence smong all airfoils which
maps trailing edges into trailing edges, and which includes the circle
considered as an airfoil with "trailing edge" at ¢* = x. A character-
istic of this conformal correspondence may be illustrated by considering
the division of Eq. (4) by Eqa. (3):

UL/U, = cot(g%/2) (7)
This ratio is the same for all ailrfoils; furthermore, the ratio between
the velocity distributions for any two absolute angles of attack o* Ig
likewise independent of airfoil geometry, as can be seen from Eq. (2).
This means that, in principle, the conformal correspondence between any
airfoil and a circle, and therefore between any two airfoils (e.g., the
same airfoil with different flap deflections) can be established approxi-
mately from measured pressure distributions for two different angles of
attack. From the same data, computations of pressure distribution for
other angles of attack could also be carried out.

Finally, it may be of interest to consider the use of xk and o,

Up and U; in computing flows in which both incidence and 1:ft are
specified (e.g., to agree with experiment), the Kutta condition and
results near the trailing edge being ignored. This is done hy replac-

ing sin(a+B) in Eq. (1) by the required circulation, made dimensiorn’ess
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with respect to the circulation for coincident stagnation points on the
circle! - this is simply x:
U = k[sin(p) + x] (8)
From this, it is readily shown that
U = (Uycos a* + Upsin a*) - k(siﬁ a* - K) (9)
which gives the result as the sum of a Kutta condition term and a

correction term.
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